MOS INTEGRATED CIRCUIT μ PD78F0034AY

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78F0034AY is a product of the μ PD780034AY Subseries in the 78K/0 Series, and is equivalent to the μ PD780034AY but with flash memory in place of internal ROM.

The μ PD78F0034AY incorporates flash memory, which can be programmed and erased while mounted on the board.

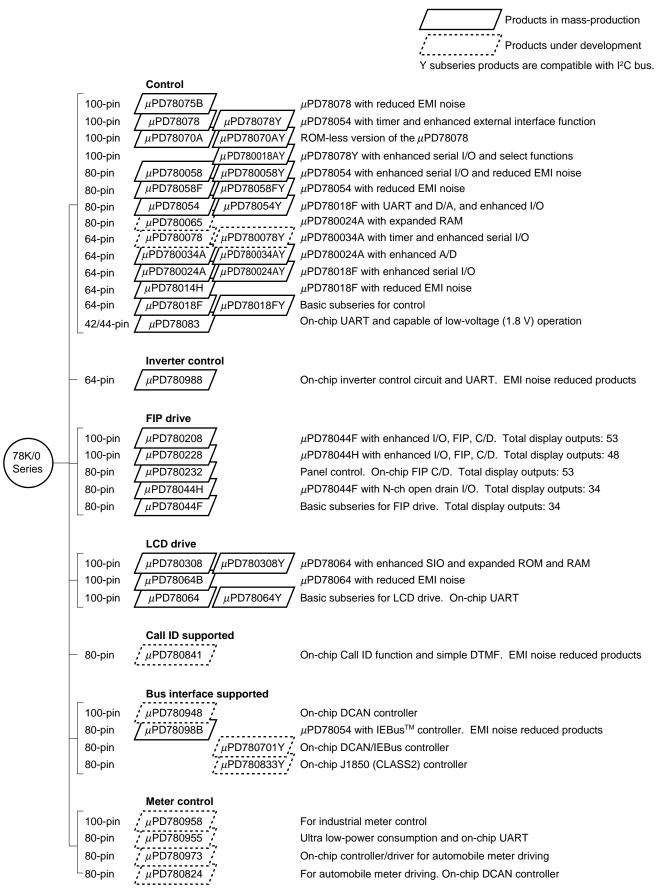
Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual: U14046E 78K/0 Series User's Manual Instruction: U12326E

FEATURES

- On-chip I²C bus serial interface supported multimaster
- Pin-compatible with mask ROM versions (except VPP pin)
- Flash memory: 32 KbytesNote
- Internal high-speed RAM: 1024 bytes^{Note}
- Supply voltage: VDD = 1.8 to 5.5 V
 - **Note** The flash memory and internal high-speed RAM capacities can be changed with the memory size switching register (IMS).

Remark For the differences between the flash memory and the mask ROM versions, refer to **1. DIFFERENCES BETWEEN** μ**PD78F0034AY AND MASK ROM VERSIONS**.


ORDERING INFORMATION

Part Number	Package	Internal ROM	
μPD78F0034AYCW	64-pin plastic shrink DIP (750 mils)	Flash memory	
μ PD78F0034AYGC-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)	Flash memory	
μ PD78F0034AYGK-8A8	64-pin plastic LQFP (12 $ imes$ 12 mm)	Flash memory	

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

78K/0 SERIES LINEUP

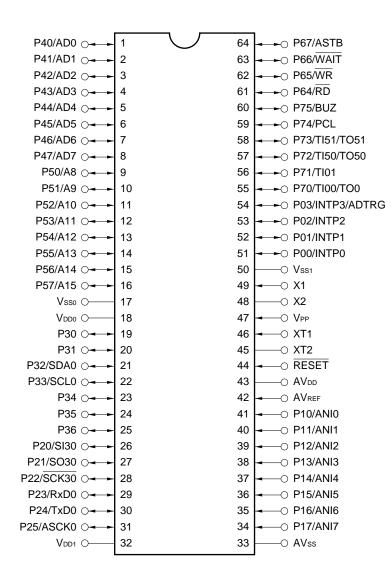
The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Data Sheet U14041EJ1V0DS00

The major functional differences among the Y subseries are shown below.

Subserie		ROM Capacity	Configuration of Serial Interface		I/O	V _{DD} MIN. Value
Control	μPD78078Y	48 K to 60 K	3-wire/2-wire/I ² C:	1 ch	88	1.8 V
	μPD78070AY		3-wire with automatic transmit/receive function: 3-wire/UART:	1 ch 1 ch	61	2.7 V
	μΡD780018AY	48 K to 60 K	3-wire with automatic transmit/receive function: Time-division 3-wire: I ² C bus (multimaster supported):	1 ch 1 ch 1 ch	88	-
	μΡD780058Y	24 K to 60 K	3-wire/2-wire/I ² C: 3-wire with automatic transmit/receive function: 3-wire/time-division UART:	1 ch 1 ch 1 ch	68	1.8 V
	μPD78058FY	48 K to 60 K	3-wire/2-wire/I ² C:	1 ch	69	2.7 V
	μPD78054Y	16 K to 60 K	3-wire with automatic transmit/receive function: 3-wire/UART:	1 ch 1 ch		2.0 V
	μPD780078Y	48 K to 60 K	3-wire UART: 3-wire/UART: I ² C bus (multimaster supported):	1 ch 1 ch 1 ch 1 ch	52	1.8 V
	μPD780034AY	8 K to 32 K	UART:	1 ch	51	1.8 V
	μPD780024AY		3-wire: I ² C bus (multimaster supported):	1 ch 1 ch		
	μPD78018FY	8 K to 60 K	3-wire/2-wire/l ² C: 3-wire with automatic transmit/receive function:	1 ch 1 ch	53	
LCD drive	μΡD780308Y	48 K to 60 K	3-wire/2-wire/l ² C: 3-wire/time-division UART: 3-wire:	1 ch 1 ch 1 ch	57	2.0 V
	μPD78064Y	16 K to 32 K	3-wire/2-wire/l ² C: 3-wire/UART:	1 ch 1 ch		

Remark Functions other than the serial interface are common to the non-Y subseries

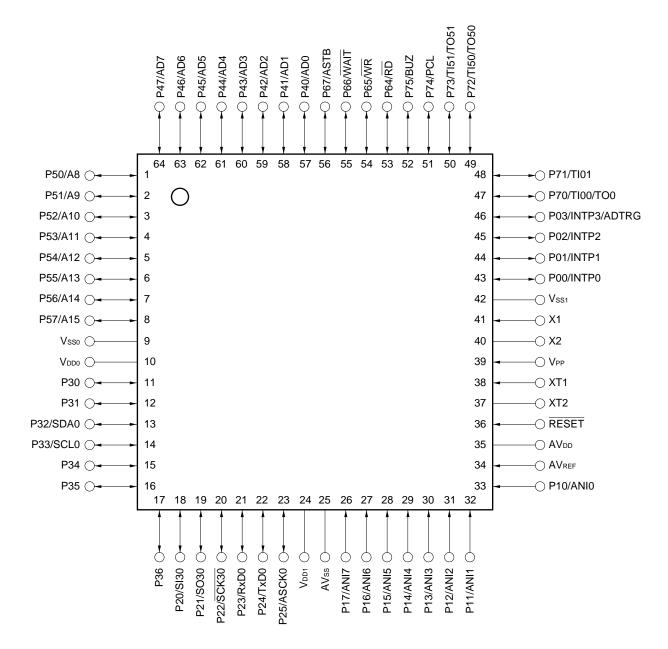

OVERVIEW OF FUNCTIONS

	Item	Function		
Internal Flash memory		32 Kbytes ^{Note}		
memory	High-speed RAM	1024 bytes ^{Note}		
Memory space		64 Kbytes		
General-purpos	e registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)		
Minimum instruc	tion execution time	On-chip minimum instruction execution time cycle modification function		
	When main system clock selected	0.24 μs/0.48 μs/0.95 μs/1.91 μs/3.81 μs (@ 8.38-MHz operation)		
	When subsystem clock selected	122 μs (@ 32.768-kHz operation)		
Instruction set		 16-bit operation, multiply/divide (8 bits × 8 bits,16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjust, etc. 		
I/O ports		Total: 51		
		CMOS input: 8 CMOS I/O: 39 N-ch open drain I/O (5-V resistance): 4		
A/D converter		 10-bit resolution × 8 channels Operable over a wide power supply voltage range: AV_{DD} = 1.8 to 5.5 V 		
Serial interface		 3-wire serial I/O mode: 1 channel UART mode: 1 channel I²C bus mode (multimaster supported): 1 channel 		
Timer		 16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel 		
Timer outputs		3 (8-bit PWM output capable 2)		
Clock output		65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (@ 8.38-MHz operation with main system clock) 32.768 kHz (@ 32.768-kHz operation with subsystem clock)		
Buzzer output		1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (@ 8.38-MHz operation with main system clock)		
Vectored interru sources	pt Maskable	Internal: 13 External: 5		
	Non-maskable	Internal: 1		
Software		1		
Test inputs		Internal: 1 External: 1		
Supply voltage		V _{DD} = 1.8 to 5.5 V		
Operating ambie	ent temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$		
Package		 64-pin plastic shrink DIP (750 mils) 64-pin plastic QFP (14 × 14 mm) 64-pin plastic LQFP (12 × 12 mm) 		

Note The capacities of the flash memory and the internal high-speed RAM can be changed with the memory size switching register (IMS).

PIN CONFIGURATION (TOP VIEW)

 64-pin plastic shrink DIP (750 mils) μPD78F0034AYCW

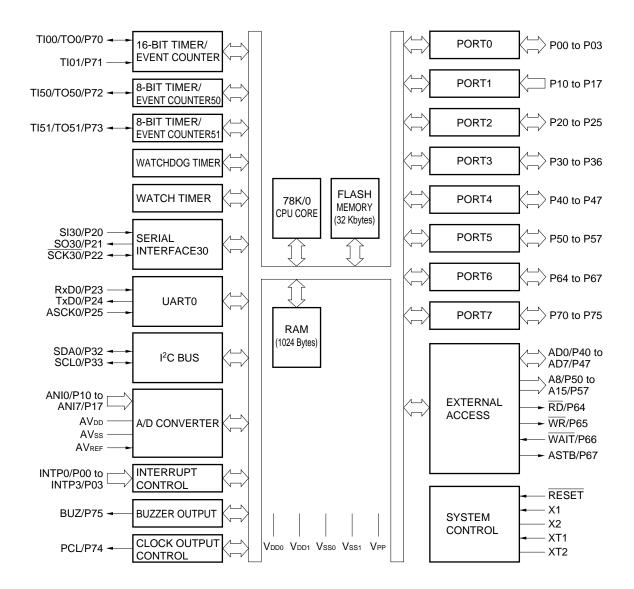


Cautions 1. Connect the VPP pin directly to Vss0 or Vss1 in normal operation mode. 2. Connect the AVss pin to Vss0.

Remark When the μPD78F0034AY is used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

NEC

- 64-pin plastic QFP (14 \times 14 mm) μ PD78F0034AYGC-AB8
- 64-pin plastic LQFP (12 \times 12 mm) μ PD78F0034AYGK-8A8


Cautions 1. Connect the VPP pin directly to Vss0 or Vss1 in normal operation mode. 2. Connect the AVss pin to Vss0.

Remark When the μPD78F0034AY is used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

A8 to A15:	Address Bus
AD0 to AD7:	Address/Data Bus
ADTRG:	AD Trigger Input
ANI0 to ANI7:	Analog Input
ASCK0:	Asynchronous Serial Clock
ASTB:	Address Strobe
AVdd:	Analog Power Supply
AVREF:	Analog Reference Voltage
AVss:	Analog Ground
BUZ:	Buzzer Clock
INTP0 to INTP3:	External Interrupt Input
P00 to P03:	Port 0
P10 to P17:	Port 1
P20 to P25:	Port 2
P30 to P36:	Port 3
P40 to P47:	Port 4
P50 to P57:	Port 5
P64 to P67:	Port
P70 to P75:	Port 7

PCL:	Programmable Clock
RD:	Read Strobe
RESET:	Reset
RxD0:	Receive Data
SCK30, SCL0:	Serial Clock
SDA0:	Serial Data
SI30:	Serial Input
SO30:	Serial Output
TI00, TI01, TI50, TI51	: Timer Input
TO0, TO50, TO51:	Timer Output
TxD0:	Transmit Data
Vddo, Vdd1:	Power Supply
Vpp:	Programming Power Supply
Vsso, Vss1:	Ground
WAIT:	Wait
WR:	Write Strobe
X1, X2:	Crystal (Main System Clock)
XT1, XT2:	Crystal (Subsystem Clock)

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN μ PD78F0034AY AND MASK ROM VERSIONS	10
2.	PIN FUNCTIONS	
	2.2 Non-Port Pins	
	2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	
3.	MEMORY SIZE SWITCHING REGISTER (IMS)	16
4.	FLASH MEMORY PROGRAMMING	17
	4.1 Selection of Communication Mode	
	4.2 Flash Memory Programming Functions	
	4.3 Connection of Flashpro II and Flashpro III	18
5.	ELECTRICAL SPECIFICATIONS	20
6.	PACKAGE DRAWINGS	43
7.	RECOMMENDED SOLDERING CONDITIONS	46
AP	PENDIX A. DEVELOPMENT TOOLS	48
AP	PENDIX B. RELATED DOCUMENTS	54

1. DIFFERENCES BETWEEN μ PD78F0034AY AND MASK ROM VERSIONS

The μ PD78F0034AY is a product provided with a flash memory which enables writing, erasing, and rewriting of programs with device mounted on the target system.

The functions of the μ PD78F0034AY (except the functions specified for flash memory) can be made the same as those of the mask ROM versions by setting the memory size switching register (IMS).

Table 1-1 shows the differences between the flash memory (μ PD78F0034AY) and the mask ROM versions.

Table 1-1. Differences Between μ PD78F0034AY and Mask ROM Versions

Item	μPD78F0034AY	Mask ROM	/ Versions	
		µPD780034AY Subseries	µPD780024AY Subseries ^{Note}	
Internal ROM structure	Flash memory	Mask ROM		
Internal ROM capacity	32 Kbytes	μPD780031AY: 8 Kbytes μPD780032AY: 16 Kbytes μPD780033AY: 24 Kbytes μPD780034AY: 32 Kbytes	μPD780021AY: 8 Kbytes μPD780022AY: 16 Kbytes μPD780023AY: 24 Kbytes μPD780024AY: 32 Kbytes	
Internal high-speed RAM capacity	1024 bytes	μPD780031AY: 512 bytes μPD780032AY: 512 bytes μPD780033AY: 1024 bytes μPD780034AY: 1024 bytes	μPD780021AY: 512 bytes μPD780022AY: 512 bytes μPD780023AY: 1024 bytes μPD780024AY: 1024 bytes	
A/D converter resolution	10 bits		8 bits	
Mask option specification of on-chip pull-up resistor for pins P30 to P31	Not available	Available		
IC pin	Not provided	Provided		
VPP pin	Provided	Not provided		
Electrical specifications, recommended soldering conditions	Refer to the data sheet of i	et of individual products.		

Note The μ PD78F0034AY can be used as the flash memory version of the μ PD780024AY Subseries.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

2. PIN FUNCTIONS

2.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	I/O	Port 0	Input	INTP0	
P01		4-bit input/output port.		INTP1	
P02		Input/output can be specified	in 1-bit units. n be specified by means of software.		INTP2
P03			in be specified by means of software.		INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input only port.		Input	ANI0 to ANI7
P20	I/O	Port 2		Input	SI30
P21		6-bit input/output port.			SO30
P22		Input/output can be specified			SCK30
P23		An on-chip puil-up resistor ca	n be specified by means of software.		RxD0
P24					TxD0
P25					ASCK0
P30	I/O	Port 3	N-ch open drain input/output port.	Input	_
P31		7-bit input/output port.	LEDs can be driven directly.		
P32		Input/output can be specified in 1-bit units			SDA0
P33		in 1-dit units			SCL0
P34			An on-chip pull-up resistor can be		_
P35			specified by means of software.		
P36					
P40 to P47	I/O		in 1-bit units. n be specified by means of software. set to 1 by falling edge detection.	Input	AD0 to AD7
P50 to P57	I/O	Port 5 8-bit input/output port. LEDs can be driven directly. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.		Input	A8 to A15
P64	I/O	Port 6		Input	RD
P65	1	4-bit input/output port.			WR
P66	1	Input/output can be specified			WAIT
P67	1	An on-onip pull-up resistor cal	n be specified by means of software.		ASTB

2.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7	Input	TI00/TO0
P71		6-bit input/output port.		TI01
P72		Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.		TI50/TO50
P73		An on-one pull-up resistor can be specified by means of software.		TI51/TO51
P74				PCL
P75				BUZ

2.2 Non-Port Pins (1/2)

Pin Name	I/O	Function After Reset		Alternate Function
INTP0 to INTP2	Input	External interrupt request input by which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.		P00 to P02
INTP3				P03/ADTRG
SI30	Input	Serial interface serial data input.	Input	P20
SO30	Output	Serial interface serial data output.	Input	P21
SDA0	I/O	Serial interface serial data input/output.	Input	P32
SCK30	I/O	Serial interface serial clock input/output.	Input	P22
SCL0				P33
RxD0	Input	Serial data input for asynchronous serial interface.	Input	P23
TxD0	Output	Serial data output for asynchronous serial interface.	Input	P24
ASCK0	Input	Serial clock input for asynchronous serial interface.	Input	P25
TI00	Input	External count clock input to 16-bit timer (TM0). Capture trigger signal input to TM0 capture register (CR01).	Input	P70/TO0
TI01		Capture trigger signal input to TM0 capture register (CR00).		P71
TI50		External count clock input to 8-bit timer (TM50).		P72/TO50
TI51		External count clock input to 8-bit timer (TM51).		P73/TO51
TO0	Output	16-bit timer (TM0) output.	Input	P70/TI00
TO50		8-bit timer (TM50) output (shared with 8-bit PWM output).	Input	P72/TI50
TO51		8-bit timer (TM51) output (shared with 8-bit PWM output).		P73/TI51
PCL	Output	Clock output (for trimming of main system clock and subsystem clock).	Input	P74
BUZ	Output	Buzzer output.	Input	P75
AD0 to AD7	I/O	Lower address/data bus for extending memory externally. Input		P40 to P47
A8 to A15	Output	Higher address bus for extending memory externally.	Input	P50 to P57
RD	Output	Strobe signal output for read operation of external memory. Input P		P64
WR		Strobe signal output for write operation of external memory.		P65
WAIT	Input	Inserting wait for accessing external memory.	Input	P66
ASTB	Output			P67

2.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input.	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input.	_	_
AVdd	_	A/D converter analog power supply. Set the voltage equal to VDD0 or VDD1.	_	_
AVss	_	A/D converter ground potential. Set the voltage equal to Vsso or Vss1.	_	_
RESET	Input	System reset input.	_	—
X1	Input	Connecting crystal resonator for main system clock oscillation.	_	—
X2	—		—	—
XT1	Input	Connecting crystal resonator for subsystem clock oscillation.	—	—
XT2	—		_	—
Vddo	—	Positive power supply voltage for ports.	—	—
Vsso	—	Ground potential of ports.	—	—
Vdd1	_	Positive power supply (except ports).	_	_
V _{SS1}	_	Ground potential (except ports).	_	—
Vpp		Applying high-voltage for program write/verify. Connect directly to V_{SS0} or V_{SS1} in normal operation mode.	_	

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the input/output configuration of each type, refer to Figure 2-1.

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0 to P02/INTP2	8-C	Input	Independently connect to Vsso via a resistor.
P03/INTP3/ADTRG			
P10/ANI0 to P17/ANI7	25	Input	Independently connect to VDD0 or VSS0 via a resistor.
P20/SI30	8-C	Input/output	
P21/SO30	5-H		
P22/SCK30	8-C		
P23/RxD0			
P24/TxD0	5-H		
P25/ASCK0	8-C		
P30, P31	13-P	Input/output	Independently connect to VDD0 via a resistor.
P32/SDA0	13-R		
P33/SCL0			
P34	8-C		Independently connect to VDD0 or VSS0 via a resistor.
P35	5-H		
P36	8-C		
P40/AD0 to P47/AD7	5-H	Input/output	Independently connect to VDD0 via a resistor.
P50/A8 to P57/A15	5-H	Input/output	Independently connect to VDD0 or VSS0 via a resistor.
P64/RD		Input/output	
P65/WR			
P66/WAIT			
P67/ASTB			
P70/TI00/TO0	8-C		
P71/TI01			
P72/TI50/TO50			
P73/TI51/TO51			
P74/PCL	5-H		
P75/BUZ			
RESET	2	Input	_
XT1	16		Connect to VDD0.
XT2		_	Leave open.
AVdd	-		Connect to VDD0.
AVREF			Connect to Vsso.
AVss			
Vpp	7		Connect directly to Vsso or Vss1.

Table 2-1. Types of Pin Input/Output Circuits

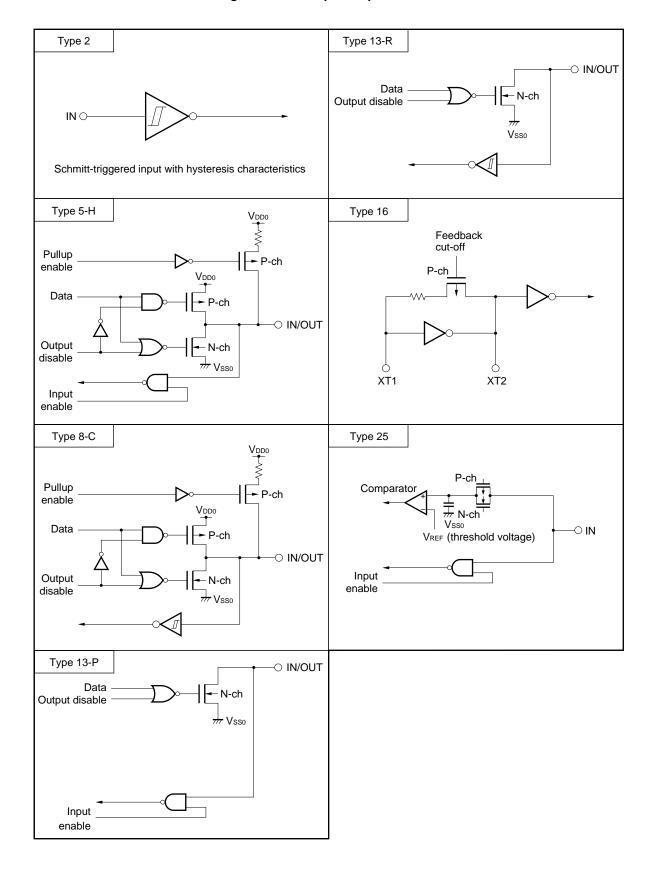


Figure 2-1. Pin Input/Output Circuits

3. MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register that is set by software and is used to specify a part of the internal memory that is not to be used. By setting IMS, the internal memory of the μ PD78F0034AY can be mapped identically to that of a mask ROM version.

 $\ensuremath{\mathsf{IMS}}$ is set with an 8-bit memory manipulation instruction.

RESET input sets the IMS to CFH.

Caution The initial value of IMS is setting disabled (CFH). Be sure to set C8H or the value of the target mask ROM version at the moment of initial setting.

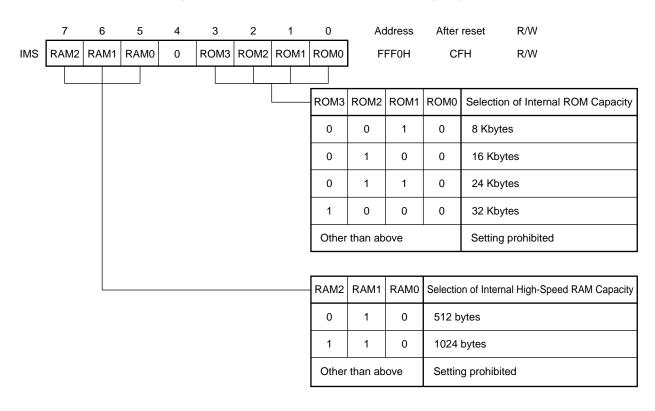


Figure 3-1. Format of Memory Size Switching Register

Table 3-1 shows the IMS set value to make the memory mapping the same as those of mask ROM versions.

Table 3-1. Set Value of Memory Size Switching Register

Target Mask ROM Versions	IMS Set Value
μΡD780031AY	42H
μΡD780032AY	44H
μΡD780033AY	C6H
μΡD780034AY	C8H

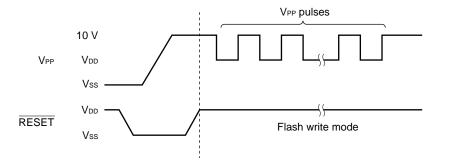
4. FLASH MEMORY PROGRAMMING

Writing to flash memory can be performed without removing the memory from the target system (on board programming). Writing is performed with the dedicated flash programmer (Flashpro II (model No.: FL-PR2) or Flashpro III (model No.: FL-PR3 and PG-FP3)) connected to the host machine and the target system.

Writing to flash memory can also be performed using flash memory writing adapter connected to Flashpro II or Flashpro III.

Remark FL-PR2 and FL-PR3 are products of Naito Densei Machida Mfg. Co., Ltd.

4.1 Selection of Communication Mode


Writing to a flash memory is performed using Flashpro II or Flashpro III in a serial communication. Select one of the communication modes in Table 4-1. The selection of the communication mode is made by using the format shown in Figure 4-1. Each communication mode is selected by the number of VPP pulses shown in Table 4-1.

Communication Mode	Channels	Used Pin	VPP Pulses
3-wire serial I/O	1	SI30/P20 SO30/P21 SCK30/P22	0
I ² C bus	1	SDA0/P32 SCL0/P33	4
UART	1	RxD0/P23 TxD0/P24	8
Pseudo 3-wire serial I/O	1	P72/TI50/TO50 (serial clock input) P71/TI01 (serial data output) P70/TI00/TO0 (serial data input)	12

Table 4-1. List of Communication Mode

Caution Be sure to select a communication mode using the number of VPP pulses shown in Table 4-1.

Figure 4-1. Format of Communication Mode Selection

4.2 Flash Memory Programming Functions

Operations such as writing to flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. Table 4-2 shows major functions of flash memory programming.

Function	Description
Reset	Used to stop write operation and detect transmission cycle.
Batch verify	Compares the entire memory contents with the input data.
Batch erase	Erases the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
High-speed write	Performs write to the flash memory based on the write start address and the number of data to be written (number of bytes).
Continuous write	Performs continuous write based on the information input with high-speed write operation.
Status	Used to confirm the current operating mode and operation end.
Oscillation frequency setting	Sets the frequency of the resonator.
Erase time setting	Sets the memory erase time.
Silicon signature read	Outputs the device name and memory capacity, and device block information.

Table 4-2. Major Functions of Flash Memory Programming

4.3 Connection of Flashpro II and Flashpro III

The connection of Flashpro II or Flashpro III and the μ PD78F0034AY differs according to the communication mode (3-wire serial I/O, UART, and pseudo 3-wire serial I/O). The connection for each communication mode is shown in Figures 4-2 through 4-5, respectively.

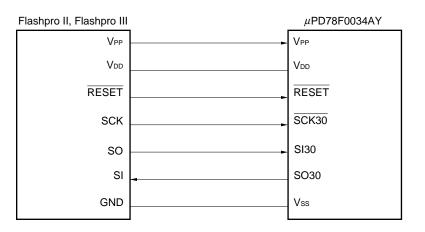


Figure 4-3. Connection of Flashpro II or Flashpro III for I²C Bus Mode

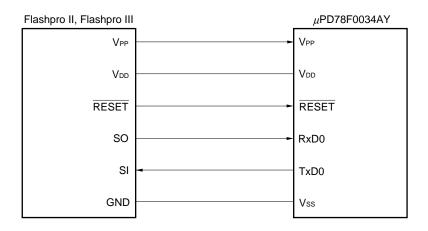
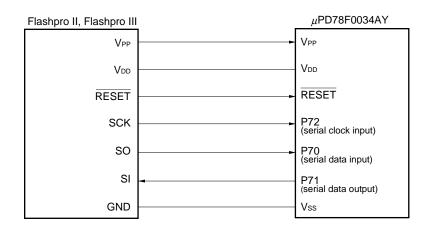



Figure 4-5. Connection of Flashpro II or Flashpro III for Pseudo 3-Wire Serial I/O Mode

5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Test Conditions	Ratings	Unit
Supply voltage	Vdd			-0.3 to +6.5	V
	Vpp			-0.3 to +10.5	V
	AVDD			-0.3 to V _{DD} + 0.3 ^{Note}	V
	AVREF			-0.3 to V _{DD} + 0.3 ^{Note}	V
	AVss			-0.3 to +0.3	V
Input voltage	VI1		10 to P17,P20 to P25, P34 to P36, 50 to P57, P64 to P67, P70 to P75, KT2, RESET	-0.3 to V _{DD} + 0.3 ^{Note}	V
	V ₁₂	P30 to P33	N-ch open drain	-0.3 to +6.5	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3Note	V
Analog input voltage	Van	P10 to P17	Analog input pin	AVss -0.3 to AVREF + 0.3^{Note} and -0.3 to V _{DD} + 0.3^{Note}	V
Output current, high	Іон	Per pin		-10	mA
		Total for P00 P64 to P67, P	to P03, P40 to P47, P50 to P57, 70 to P75	-15	mA
		Total for P20	to P25, P30 to P36	-15	mA
Output current, low	lo∟		0 to P03, P20 to P25, P34 to P36, 64 to P67, P70 to P75	20	mA
		Per pin for P3	0 to P33, P50 to P57	30	mA
		Total for P00 P70 to P75	to P03, P40 to P47, P64 to P67,	50	mA
		Total for P20	to P25	20	mA
		Total for P30	to P36	100	mA
		Total for P50	to P57	100	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-40 to +125	°C

Note The rating should be 6.5 V or less.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Parameter	Symbol	Test C	Test Conditions		TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz Pins other than measured pins returned to 0 V.				15	pF
I/O capacitance	Сю	f = 1 MHz Pins other than measured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75,			15	pF
			P30 to P33			20	pF

Capacitance (T_A = 25° C, V_{DD} = V_{SS} = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillation Circuit Characteristics ($T_A = -40$ to $85^{\circ}C$, $V_{DD} = 1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	VPP X2 X1	Oscillation	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
resonator		frequency (fx) ^{Note 1}		1.0		5.0	
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscil- lation voltage range MIN.			4	ms
Crystal	VPP X2 X1	Oscillation	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
resonator	│	frequency (fx) ^{Note 1}		1.0		5.0	
		Oscillation	V _{DD} = 4.0 to 5.5 V			10	ms
	' 7777	stabilization time ^{Note 2}				30	
External	x2 x1	X1 input	VDD = 4.0 to 5.5 V	1.0		8.38	MHz
clock		frequency (fx) ^{Note 1}		1.0		5.0	
		X1 input high-/low-level	V _{DD} = 4.0 to 5.5 V	50		500	ns
	μPD74HCU04 Z	width (txн, tx∟)		85		500	

Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always keep the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1VPP	Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
	≠C4 ≠C3	Oscillation	V _{DD} = 4.0 to 5.5 V		1.2	2	s
	iti 777	stabilization time ^{Note 2}				10	
External clock	XT2 XT1	X1 input frequency (f _{XT}) ^{Note 1}		32		38.5	kHz
		X1 input high-/low-level width (tхтн, tхт∟)		5		15	μs

Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken line in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always keep the ground point of the oscillator to the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Recommended Oscillator Constant

Manufacturer	Part Number	Frequency	Recommended	Circuit Constant	Oscillation V	oltage Range
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Murata Mfg.	CSB1000J	1.00	100	100	1.9	5.5
Co., Ltd.	CSA2.00MG040	2.00	100	100	2.0	5.5
	CST2.00MG040	2.00	On-chip	On-chip	2.0	5.5
	CSA3.58MG	3.58	30	30	2.0	5.5
	CST3.58MGW	3.58	On-chip	On-chip	2.0	5.5
	CSA3.58MG093	3.58	30	30	1.8	5.5
	CST3.58MGW093	3.58	On-chip	On-chip	1.8	5.5
	CSA4.19MG	4.19	30	30	2.0	5.5
	CST4.19MGW	4.19	On-chip	On-chip	2.0	5.5
	CSA4.19MG093	4.19	30	30	1.8	5.5
	CST4.19MGW093	4.19	On-chip	On-chip	1.8	5.5
	CSA5.00MG	5.00	30	30	2.0	5.5
	CST5.00MGW	5.00	On-chip	On-chip	2.0	5.5
	CSA5.00MG093	5.00	30	30	1.8	5.5
	CST5.00MGW093	5.00	On-chip	On-chip	1.8	5.5
	CSA8.00MTZ	8.00	30	30	4.0	5.5
	CST8.00MTW	8.00	On-chip	On-chip	4.0	5.5
	CSA8.00MTZ093	8.00	30	30	4.0	5.5
	CST8.00MTW093	8.00	On-chip	On-chip	4.0	5.5
	CSA8.38MTZ	8.38	30	30	4.0	5.5
	CST8.38MTW	8.38	On-chip	On-chip	4.0	5.5
	CSA8.38MTZ093	8.38	30	30	4.0	5.5
	CST8.38MTW093	8.38	On-chip	On-chip	4.0	5.5
TDK	CCR3.58MC3	3.58	On-chip	On-chip	1.8	5.5
	CCR4.19MC3	4.19	On-chip	On-chip	1.8	5.5
	CCR5.0MC3	5.00	On-chip	On-chip	1.8	5.5
	CCR8.0MC5	8.00	On-chip	On-chip	4.0	5.5
	CCR8.38MC5	8.38	On-chip	On-chip	4.0	5.5

Main System Clock: Ceramic Resonator (T_A = -40 to $+85^{\circ}$ C)

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details please contact directly the manufacturer of the resonator you will use.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	С	onditions	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current, low	Iol	Per pin for P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75				10	mA
		Per pin for P30 to P33, P50 to P57				15	mA
		Total for P00 to P03, P40 to P47, P64 to P67, P70 to P75				20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57				70	mA
Input voltage, high	VIH1	P10 to P17, P21, P24, P35, P40 to P47,	V _{DD} = 2.7 to 5.5 V	0.7 Vdd		Vdd	V
		P50 to P57, P64 to P67, P74, P75		0.8 Vdd		Vdd	V
	VIH2	P00 to P03, P20, P22, P23, P25, P34, P36,	V _{DD} = 2.7 to 5.5 V	0.8 Vdd		Vdd	V
		P70 to P73, RESET		0.85 Vdd		Vdd	V
	Vінз	P30 to P33	VDD = 2.7 to 5.5 V	0.7 Vdd		5.5	V
		(N-ch open-drain)		0.8 Vdd		5.5	V
	VIH4	X1, X2	VDD = 2.7 to 5.5 V	Vdd-0.5		Vdd	V
				Vdd-0.2		Vdd	V
	Vih5	XT1, XT2	V _{DD} = 4.0 to 5.5 V	0.8 Vdd		Vdd	V
				0.9 Vdd		Vdd	V
Input voltage, Iow	VIL1	P10 to P17, P21, P24, P35, P40 to P47,	V _{DD} = 2.7 to 5.5 V	0		0.3 Vdd	V
		P50 to P57, P64 to P67, P74, P75		0		0.2 Vdd	V
	VIL2	P00 to P03, P20, P22, P23, P25, P34, P36,	V _{DD} = 2.7 to 5.5 V	0		0.2 Vdd	V
		P70 to P73, RESET		0		0.15 Vdd	V
	VIL3	P30 to P33	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.3 Vdd	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.2 Vdd	V
			1.8 V ≤ Vdd < 2.7	0		0.1 Vdd	V
	VIL4	X1, X2	VDD = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
	VIL5	XT1, XT2	VDD = 4.0 to 5.5 V	0		0.2 Vdd	V
				0		0.1 Vdd	V
Output voltage,	Vон1	VDD = 4.0 to 5.5 V, Iон = -	1 mA	Vdd-1.0		Vdd	V
high		Іон = –100 <i>µ</i> А		Vdd-0.5		Vdd	V
Output voltage,	Vol1	P30 to P33	VDD = 4.0 to 5.5 V, IOL = 15 mA			2.0	V
low		P50 to P57	1		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75	V_{DD} = 4.0 to 5.5 V, I_{OL} = 1.6 mA			0.4	V
	Vol2	$I_{OL} = 400 \ \mu A$				0.5	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	μA
	ILIH2		X1, X2, XT1, XT2			20	μA
	Іцнз	VIN = 5.5 V	P30 to P33			3	μA
Input leakage current, low	ILIL1	V _{IN} = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μA
	ILIL3		P30 to P33			-3	μA
Output leakage current, low	Ігон	Vout = Vdd				3	μΑ
Output leakage current, low	Ilol	Vout = 0 V				-3	μΑ
Software pull- up resistor	R	V _{IN} = 0 V, P00 to P03, P20 to F P50 to P57, P64 to F	P25, P34 to P36, P40 to P47, P67, P70 to P75	15	30	90	kΩ

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins .

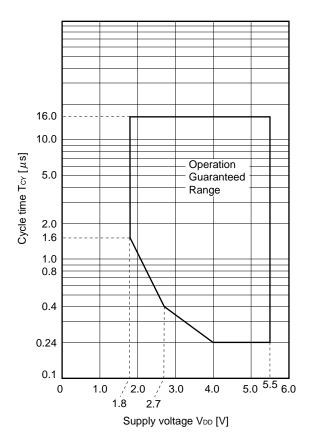
Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD1	8.38-MHz crystal	V_{DD} = 5.0 V ± 10 % ^{Note 2}	A/D converter stopped		10.5	21	mA
current ^{Note 1}		oscillation operating mode		A/D converter operating		11.5	23	mA
		5.00-MHz crystal	$V_{\text{DD}} = 3.0 \text{ V} \pm 10 \text{ \%}^{\text{Note 2}}$	A/D converter stopped		4.5	9	mA
		oscillation operation mode		A/D converter operating		5.5	11	mA
			V _{DD} = 2.0 V 10% ^{Note 3}	A/D converter stopped		1	2	mA
				A/D converter operating		2	6	mA
	IDD2	8.38-MHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10 \text{ \%}^{Note 2}$	Peripheral functions stopped		1.2	2.4	mA
		oscillation HALT mode		Peripheral functions operating			5	mA
		5.00-MHz crystal	$V_{\text{DD}} = 3.0 \text{ V} \pm 10 \%^{\text{Note 2}}$	Peripheral functions stopped		0.4	0.8	mA
	oscillation HALT mode		Peripheral functions operating			1.7	mA	
			$V_{DD} = 2.0 \text{ V} \pm 10 \%^{\text{Note 3}}$	Peripheral functions stopped		0.2	0.4	mA
				Peripheral functions operating			1.1	mA
	IDD3	32.768-kHz crystal oscilla	ation operating mode ^{Note 4}	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		115	230	μA
				$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$		95	190	μA
				$V_{\text{DD}} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		75	150	μA
	IDD4	32.768-kHz crystal oscilla	ation HALT mode ^{Note 4}	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		30	60	μA
				$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$		6	18	μA
			$V_{\text{DD}} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		2	10	μA	
	Idd5	XT1 = 0 V, STOP mode		$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		0.1	30	μA
		When feed-back resistor	not used	V_{DD} = 3.0 V ± 10% ^{Note 2}		0.05	10	μA
				Vdd = 2.0 V ± 10% ^{Note 3}		0.05	10	μA

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Notes 1. Refers to the total current flowing through the internal power supply (VDD0 and VDD1). Includes peripheral operating current (however, current flowing through the pull-up resistors of ports and the AVREF pin is not included).

- 2. When the processor clock control register (PCC) is set to 00H.
- 3. When PCC is set to 02H.
- 4. When the main system clock is stopped.

NEC


AC Characteristics

Parameter	Symbol	Te	est Cond	itions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating on main	$4.0 \leq V_D$	⊳ ≤ 5.5 V	0.24		16	μs
(Min. instruction execution time)		system clock	2.7 V ≤	Vdd < 4.0 V	0.4		16	μs
					1.6		16	μs
		Operating on subsyst	tem clock	ς	103.9 ^{Note 1}	122	125	μs
TI00, TI01 input	00, TI01 input t_{TIH0} , t_{TIL0} 4.0 V \leq V_DD \leq 5.5 V				2/fsam + 0.1 ^{Note2}			μs
high-/low-level width		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$			2/fsam + 0.2 ^{Note2}			μs
					2/fsam + 0.5 ^{Note2}			μs
TI50, TI51 input	fTI5	V _{DD} = 2.7 to 5.5 V			0		4	MHz
frequency					0		275	kHz
TI50, TI51 input	t⊤iH5, t⊤iL5	V _{DD} = 2.7 to 5.5 V			100			ns
high-/low-level width					1.8			μs
Interrupt request	tinth, tintl	INTP0 to INTP3, P40	to P47	V _{DD} = 2.7 to 5.5 V	1			μs
input high-/low -level width					2			μs
RESET	trsl	VDD = 2.7 to 5.5 V			10			μs
low-level width					20			μs

(1) Basic operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 1.8$ to 5.5 V)

Notes 1. Value when using an external clock. When using a crystal resonator, the value becomes 114 μ s (MIN.).

2. Selection of $f_{sam} = f_x$, $f_x/4$, $f_x/64$ is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes $f_{sam} = f_x/8$.

Tcy vs VDD (main system clock)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcv		ns
Address setup time	tads		20		ns
Address hold time	t adh		6		ns
Data input time from address	tADD1			(2 + 2n)tcr – 54	ns
	tADD2			(3 + 2n)tcr - 60	ns
Address output time from $\overline{RD} \downarrow$	trdad		0	100	ns
Data input time from $\overline{RD}\downarrow$	trdd1			(2 + 2n)tcy - 87	ns
	trdd2			(3 + 2n)tcr – 93	ns
Read data hold time	t rdh		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcr - 33		ns
	trdl2		(2.5 + 2n)tcy - 33		ns
$\overline{WAIT}\downarrow$ input time from $\overline{RD}\downarrow$	trdwt1			tcy – 43	ns
	trdwt2			tcy - 43	ns
$\overline{WAIT}\downarrow$ input time from $\overline{WR}\downarrow$	twrwt			tcy – 25	ns
WAIT low-level width	tw⊤∟		(0.5 + n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		6		ns
WR low-level width	twrl1		(1.5 + 2n)tcr – 15		ns
$\overline{RD} \downarrow$ delay time from ASTB \downarrow	t ASTRD		6		ns
$\overline{WR} \downarrow$ delay time from ASTB \downarrow	t ASTWR		2tcy – 15		ns
ASTB↑ delay time from RD↑ in external fetch	t rdast		0.8tcy – 15	1.2tcr	ns
Address hold time from RD [↑] in external fetch	trdadh		0.8tcy – 15	1.2tcy + 30	ns
Write data output time from \overline{RD}	trdwd		40		ns
Write data output time from $\overline{\text{WR}} \downarrow$	twrwd		10	60	ns
Address hold time from \overline{WR}^{\uparrow}	twradh		0.8tcy - 15	1.2tcr + 30	ns
\overline{RD} delay time from \overline{WAIT}	twtrd		0.8tcy	2.5tcr + 25	ns
WR↑ delay time from WAIT↑	twtwr		0.8tcy	2.5tcy + 25	ns

Remarks 1. tcy = Tcy/4

- **2.** n indicates the number of waits.
- 3. CL = 100 pF (CL is the load capacitance of the AD0 to AD7, A8 to A15, RD, WR, WAIT, and ASTB pins.)

(2) Read/write operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 4.0 V) (2/3)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcy		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Data input time from address	tADD1			(2 + 2n)tcy - 108	ns
	tADD2			(3 + 2n)tcr – 120	ns
Address output time from $\overline{\text{RD}}\downarrow$	trdad		0	200	ns
Data input time from $\overline{\mathrm{RD}}\downarrow$	trdd1			(2 + 2n)tcy – 148	ns
	trdd2			(3 + 2n)tcy – 162	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcy - 40		ns
	trdl2		(2.5 + 2n)tcy - 40		ns
$\overline{WAIT} {\downarrow}$ input time from $\overline{RD} {\downarrow}$	trdwt1			tcy – 75	ns
	trdwt2			tcy – 60	ns
$\overline{\mathrm{WAIT}} {\downarrow}$ input time from $\overline{\mathrm{WR}} {\downarrow}$	twrwt			tcy – 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcy + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twpн		10		ns
WR low-level width	twrl1		(1.5 + 2n)tcy - 30		ns
$\overline{\text{RD}}\downarrow$ delay time from ASTB \downarrow	t ASTRD		10		ns
$\overline{\rm WR} {\downarrow}$ delay time from ASTB ${\downarrow}$	t ASTWR		2tcy - 30		ns
ASTB↑ delay time from RD↑ in external fetch	trdast		0.8tcy - 30	1.2tcv	ns
Address hold time from $\overline{RD}\uparrow$ in external fetch	trdadh		0.8tcy - 30	1.2tcy + 60	ns
Write data output time from $\overline{\text{RD}}\uparrow$	t RDWD		40		ns
Write data output time from $\overline{\rm WR} \downarrow$	twrwd		20	120	ns
Address hold time from \overline{WR}^\uparrow	twradh		0.8tcy - 30	1.2tcy + 60	ns
$\overline{RD} \uparrow delay$ time from $\overline{WAIT} \uparrow$	t wtrd		0.5tcy	2.5tcy + 50	ns
\overline{WR}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$	twtwr		0.5tcy	2.5tcr + 50	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} is the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcy		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Data input time from address	tADD1			(2 + 2n)tcr – 233	ns
	tADD2			(3 + 2n)tcr – 240	ns
Address output time from $\overline{\text{RD}} \downarrow$	trdad		0	400	ns
Data input time from $\overline{\mathrm{RD}}\downarrow$	trdd1			(2 + 2n)tcr – 325	ns
	trdd2			(3 + 2n)tcr – 332	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdL1		(1.5 + 2n)tcy - 92		ns
	trdl2		(2.5 + 2n)tcr - 92		ns
$\overline{WAIT} {\downarrow}$ input time from $\overline{RD} {\downarrow}$	trdwt1			tcy – 350	ns
	trdwt2			tcy – 132	ns
$\overline{WAIT} {\downarrow}$ input time from $\overline{WR} {\downarrow}$	twrwt			tcy - 100	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twpн		20		ns
WR low-level width	twrL1		(1.5 + 2n)tcy - 60		ns
$\overline{\text{RD}} {\downarrow}$ delay time from $\text{ASTB} {\downarrow}$	t ASTRD		20		ns
$\overline{\rm WR} {\downarrow}$ delay time from ASTB ${\downarrow}$	t ASTWR		2tcy - 60		ns
ASTB↑ delay time from RD↑ at external fetch	trdast		0.8tcy - 60	1.2tcr	ns
Address hold time from $\overline{\text{RD}} \uparrow$ at external fetch	trdadh		0.8tcy - 60	1.2tcy + 120	ns
Write data output time from $\overline{\text{RD}}^{\uparrow}$	t RDWD		40		ns
Write data output time from $\overline{\rm WR} \downarrow$	twrwd		40	240	ns
Address hold time from $\overline{WR} \uparrow$	twradh		0.8tcy - 60	1.2tcy + 120	ns
\overline{RD}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$	t wtrd		0.5tcy	2.5tcy + 100	ns
\overline{WR}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$	twtwr		0.5tcy	2.5tcr + 100	ns

(2)	Read/write operation	(T _A = −40 to +85°C, V _{DD}	= 1.8 to 2.7 V) (3/3)
-----	-----------------------------	---	-----------------------

Remarks 1. tcy = Tcy/4

- **2.** n indicates the number of waits.
- 3. CL = 100 pF (CL is the load capacitance of the AD0 to AD7, A8 to A15, RD, WR, WAIT, and ASTB pins.)

(3) Serial interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	tkcy1	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	954			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	1600			ns
			3200			ns
SCK30 high-/low-level width	t кн1	V _{DD} = 4.0 to 5.5 V	tксү1/2–50			ns
	t ĸ∟1		tксү1/2-100			ns
SI30 setup time (to $\overline{\text{SCK30}}$)	tsik1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	150			ns
			300			ns
SI30, SI31 hold time (from	tksi1		400			
SCK30)						ns
S030 output delay time from SCK30	tkso1	C = 100 pF ^{Note}			300	ns

(a) 3-wire serial I/O mode (SCK30... internal clock output)

Note C is the load capacitance of the $\overline{SCK30}$ and SO30 output lines.

(b) 3-wire serial I/O mode (SCK30... external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1600			ns
			3200			ns
SCK30 high-/low-level width	tкн2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	400			ns
	tĸ∟2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	800			ns
			1600			ns
SI30 setup time (to $\overline{\text{SCK30}}$)	tsik2		100			ns
SI30, SI31 hold time (from SCK30)	tksi2		400			ns
SO30 output delay time from SCK30	tkso2	C = 100 pFNote			300	ns

Note C is the load capacitance of the SO30 output line.

(c) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			131031	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$			78125	bps
					39063	bps

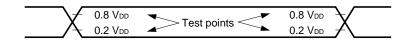
(d) UART mode (External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	1600			ns
			3200			ns
ASCK0 high-/low-level	tкнз,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
width	tк∟з	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	800			ns
			1600			ns
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			39063	bps
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$			19531	bps
					9766	bps

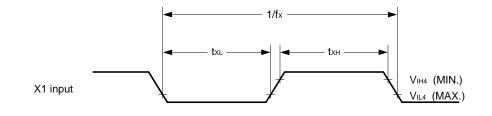
(e) UART mode (Infrared data transfer mode)

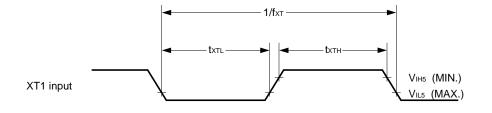
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		V _{DD} = 4.0 to 5.5 V		131031	bps
Bit rate allowable error		V _{DD} = 4.0 to 5.5 V		±0.87	%
Output pulse width		V _{DD} = 4.0 to 5.5 V	1.2	0.24/fbr ^{Note}	μs
Input pulse width		V _{DD} = 4.0 to 5.5 V	4/fx		μs

Note fbr: set baud rate

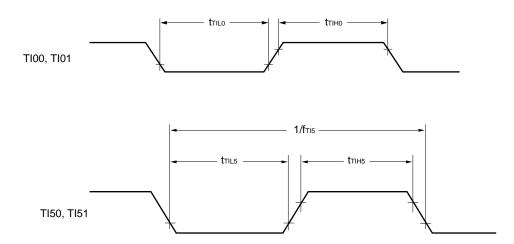

(f) I²C bus Mode

	Deremeter		Standar	d Mode	High-spe	ed Mode	
	Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL0 clock frequency		fclk	0	100	0	400	kHz
Bus free time (between stop a	and start condition)	t BUF	4.7	—	1.3	—	μs
Hold time ^{Note 1}		thd:sta	4.0	_	0.6		μs
SCL0 clock low-level width		tLOW	4.7	—	1.3	—	μs
SCL0 clock high-level width		tніgн	4.0	—	0.6	—	μs
Start/restart cor	dition setup time	tsu:sta	4.7	—	0.6	—	μs
Data hold time	CBUS compatible master	thd:dat	5.0	_	_	_	μs
	I ² C bus		ONote 2	—	ONote 2	0.9Note 3	μs
Data setup time		tsu:dat	250	_	100 ^{Note 4}	_	ns
SDA0 and SCL) signal rise time	tR	_	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL0 signal fall time		t⊧	—	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition setup time		tsu:sto	4.0		0.6		μs
Spike pulse width controlled by input filter		tsp	_	—	0	50	ns
Capacitive load	per each bus line	Cb	—	400	_	400	pF

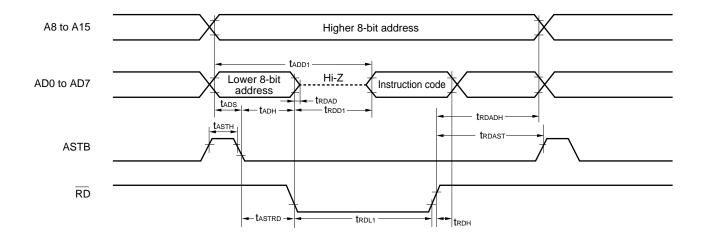

Notes 1. In the start condition, the first clock pulse is generated after this hold time.


- 2. To fill in the undefined area of the SCL0 falling edge, it is necessary for the device to internally provide at least 300 ns of hold time for the SDA0 signal (which is V_{IHmin}. of the SCL0 signal).
- **3.** If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time tHD:DAT needs to be fulfilled.
- 4. The high-speed mode I²C bus is available in a standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time $t_{SU:DAT} \ge 250 \text{ ns}$
 - If the device extends the SCL0 signal low state hold time
 - Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released ($t_{Rmax.} + t_{SU:DAT}$
 - = 1000 + 250 = 1250 ns by standard mode I²C bus specification).
- 5. Cb: Total capacitance per one bus line (unit: pF)

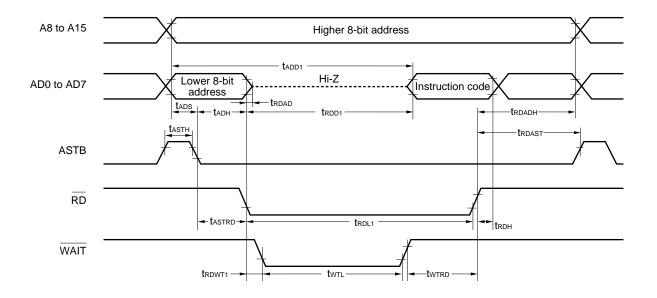
AC Timing Test Point (Excluding X1, XT1 Input)



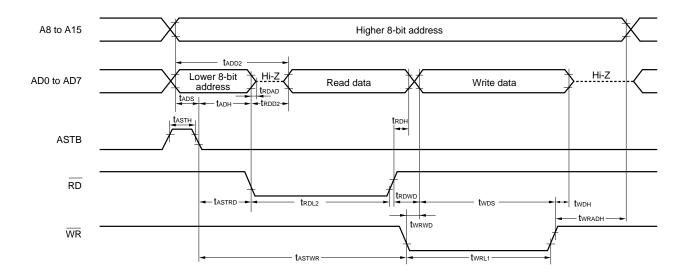
Clock Timing

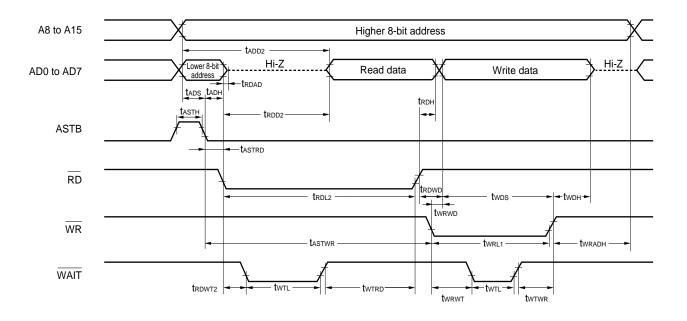


TI Timing



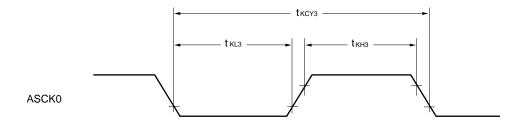
Read/Write Operation


External Fetch (No Wait):

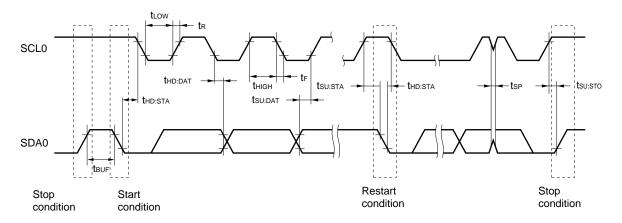

External Fetch (Wait Insertion):

External Data Access (No Wait):

External Data Access (Wait Insertion):



Serial Transfer Timing

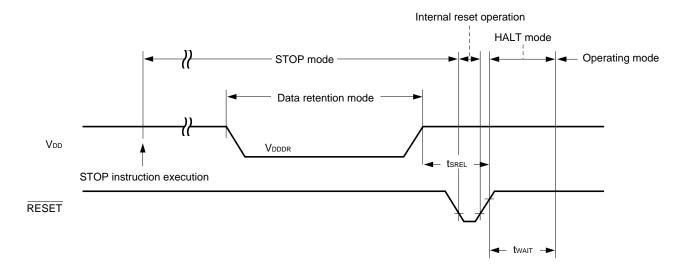

3-Wire Serial I/O Mode:

UART Mode (External Clock Input):

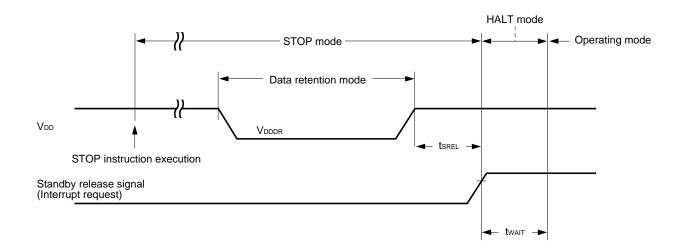
I²C Bus Mode:

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall errorNotes 1, 2		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$		±0.2	±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{Ref}} < 4.0 \text{ V}$		±0.3	±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{Ref}} < 2.7 \text{ V}$		±0.6	±1.2	%FSR
Conversion time	t CONV	$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$	14		96	μs
		$2.7 \text{ V} \leq \text{AV}_{\text{Ref}} < 4.0 \text{ V}$	19		96	μs
		$1.8 \text{ V} \leq \text{AV}_{\text{Ref}} < 2.7 \text{ V}$	28		96	μs
Zero-scale offsetNotes 1, 2		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{Ref}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{Ref}} < 2.7 \text{ V}$			±1.2	%FSR
Full-scale offsetNotes 1, 2		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{Ref}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{Ref}} < 2.7 \text{ V}$			±1.2	%FSR
Integral linearity error Note 1		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±2.5	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{Ref}} < 4.0 \text{ V}$			±4.5	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{Ref}} < 2.7 \text{ V}$			±8.5	LSB
Differential linearity errorNote 1		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±1.5	LSB
		$2.7 \text{ V} \leq AV_{\text{Ref}} \leq 4.0 \text{ V}$			±2.0	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{Ref}} < 2.7 \text{ V}$			±3.5	LSB
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		1.8		AVdd	V
Resistance between AVREF and AVSS	Rref	A/D conversion is not performed	20	40		kΩ

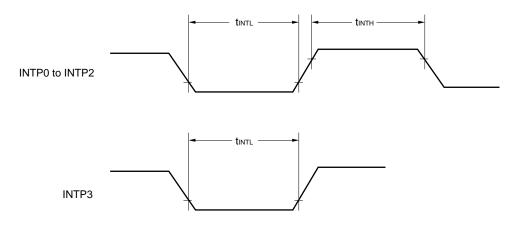
Notes 1. Excluding quantization error (±1/2 LSB).

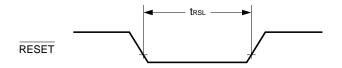

2. Shown as a percentage of the full scale value.

Remark When the μ PD78F0034AY is used as an 8-bit resolution A/D converter, the specifications are the same as for the μ PD780024AY Subseries A/D converter.


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.6		5.5	V
Data retention supply current	Idddr	V _{DDDR} = 1.6 V Subsystem clock unassigned and feed-back resistor disconnected		0.1	30	μA
Release signal set time	tSREL		0			μs
Oscillation stabilization wait time	twait	Release by RESET		2 ¹⁷ /fx		ms
		Release by interrupt request		Note		ms

Note Selection of $2^{12}/fx$ and $2^{14}/fx$ to $2^{17}/fx$ is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).


Data Retention Timing (STOP Mode Release by RESET)


Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

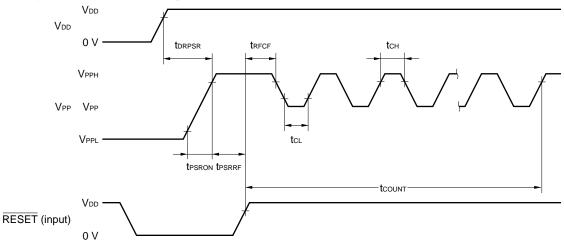
Interrupt Request Input Timing

RESET Input Timing

Flash Memory Programming Characteristics (VDD = 2.7 to 5.5 V, Vss = 0 V, VPP = 9.7 to 10.3 V)

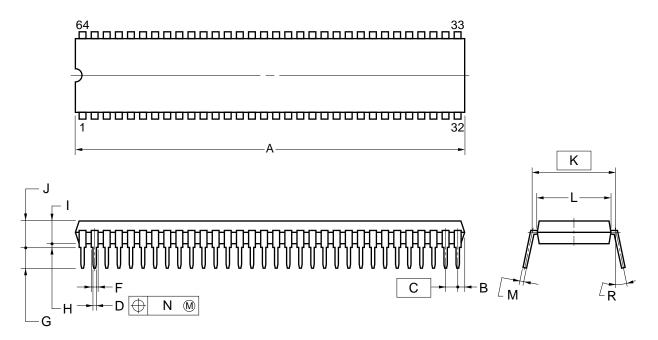
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fx	$4.0 \leq V_{\text{DD}} \leq 5.5 \text{ V}$	1.0 ^{Note 1}		8.38	MHz
		$2.7 \leq V_{DD} < 4.0 V$	1.0 ^{Note 1}		5.0	MHz
Supply voltage	Vdd	Operation voltage when writing	2.7		5.5	V
	Vppl	Upon VPP low-level detection	0		0.2 Vdd	V
	Vpp	Upon VPP high-level detection	0.8 Vdd	Vdd	1.2 Vdd	V
	Vpph	Upon VPP high-voltage detection	9.7 Note 2	10.0 ^{Note 2}	10.3 Note 2	V
VDD supply current	lod				10	mA
VPP supply current	IPP	V _{PP} =10.0 V		75	100	mA
Write time (per byte)	TWRT		50		500	μs
Number of rewrites	CWRT				20 ^{Note 3}	Times
Erase time	TERASE		1		20	S
Programming temperature	Tprg		+10		+40	°C

(1) Basic characteristics


Notes 1. When writing to flash memory by using I^2C bus, the operating frequency is 4.19 MHz (MIN.).

- 2. For the products specified as K, E, or P, 10.2 V (MIN.), 10.3 V (TYP.), and 10.4 V (MAX.) are applied.
- **3.** For the products specified as K or E, the number is 1 (MAX.).

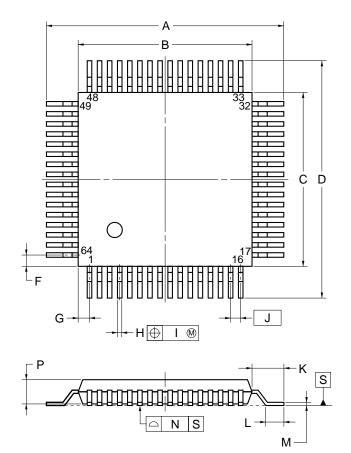
(2) Serial write operation characteristics

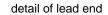

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VPP set time	t PSRON	VPP high voltage	1.0			μs
V _{PP} ↑ set time from V _{DD} ↑	t DRPSR	VPP high voltage	1.0			μs
RESET↑ set time from V _{PP} ↑	t PSRRF	VPP high voltage	1.0			μs
V _{PP} count start time from RESET↑	t RFCF		1.0			μs
Count execution time	tcount				2.0	ms
VPP counter high-level width	tсн		8.0			μs
VPP counter low-level width	tc∟		8.0			μs
VPP counter noise elimination width	t NFW			40		ns

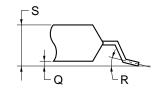
Flash Memory Write Mode Set Timing

6. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

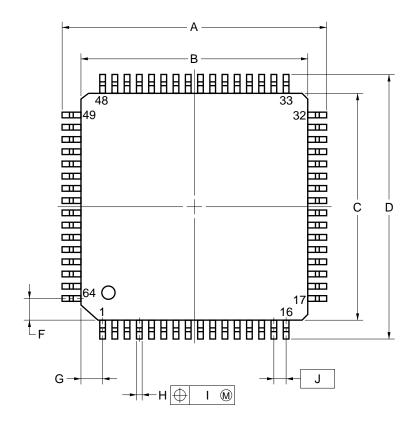

NOTES

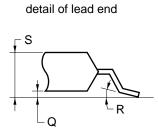

- 1. Controlling dimension— millimeter.
- 2. Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 3. Item "K" to center of leads when formed parallel.

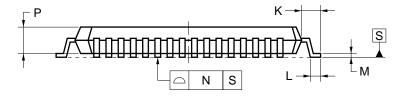

ITEM	MILLIMETERS	INCHES
А	$58.0^{+0.68}_{-0.20}$	2.283 ^{+0.028} -0.008
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	$4.05_{-0.20}^{+0.26}$	$0.159^{+0.011}_{-0.008}$
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0±0.2	$0.669^{+0.009}_{-0.008}$
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0 to 15°	0 to 15°
	P	64C-70-750A,C-3

Remark The package and material of ES products are the same as mass produced products.

64 PIN PLASTIC QFP (□14)


NOTE


- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
	_	
A	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	$0.37^{+0.08}_{-0.07}$	$0.015^{+0.003}_{-0.004}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	0.071±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.17^{+0.08}_{-0.07}$	$0.007^{+0.003}_{-0.004}$
N	0.10	0.004
Р	2.55±0.1	0.100±0.004
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	2.85 MAX.	0.113 MAX.
		P64GC-80-AB8-4

Remark The package and material of ES products are the same as mass produced products.

64 PIN PLASTIC LQFP (12x12)

NOTES

- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	14.8±0.4	0.583±0.016
В	12.0±0.2	$0.472\substack{+0.009\\-0.008}$
С	12.0±0.2	$0.472\substack{+0.009\\-0.008}$
D	14.8±0.4	0.583±0.016
F	1.125	0.044
G	1.125	0.044
н	0.32±0.08	$0.013\substack{+0.003\\-0.004}$
I	0.13	0.005
J	0.65 (T.P.)	0.026
К	1.4±0.2	0.055 ± 0.008
L	0.6±0.2	$0.024\substack{+0.008\\-0.009}$
М	$0.17\substack{+0.08 \\ -0.07}$	$0.007\substack{+0.003\\-0.004}$
Ν	0.10	0.004
Р	1.4±0.1	$0.055\substack{+0.004\\-0.005}$
Q	0.125±0.075	0.005 ± 0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.
		P64GK-65-8A8-2

Remark The package and material of ES products are the same as mass produced products.

7. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F0034AY should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 7-1. Surface Mounting Type Soldering Conditions

(1) μ PD78F0034AYGC-AB8: 64-pin plastic QFP (14 × 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds Max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds Max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C Max., Time: 10 seconds Max., Count: Once, Preheating temperature: 120°C Max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C Max., Time: 3 seconds Max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD78F0034AYGK-8A8: 64-pin plastic LQFP (12 × 12 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds Max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds Max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 10 hours)	VP15-107-2
Wave soldering	Solder bath temperature: 260°C Max., Time: 10 seconds Max., Count: Once, Preheating temperature: 120°C Max. (package surface temperature) Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 10 hours)	WS60-107-1
Partial heating	Pin temperature: 300°C Max., Time: 3 seconds Max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Table 7-2. Through-Hole Type Soldering Conditions

μ PD78F0034AYCW: 64-pin plastic shrink DIP (750 mils)

Soldering Method	Soldering Conditions
Wave soldering (pin only) Solder bath temperature: 260°C Max., Time: 10 seconds Max	
Partial heating	Pin temperature: 300°C Max., Time: 3 seconds Max. (per pin row)

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F0034AY Subseries. Also refer to (5) Cautions on Using Development Tools.

(1) Language Processing Software

RA78K/0	Assembler package common to 78K/0 Series	
CC78K/0	C compiler package common to 78K/0 Series	
DF780034	Device file common to μ PD780034A Subseries	
CC78K/0-L	C compiler library source file common to 78K/0 Series	

(2) Flash Memory Writing Tools

Flashpro II	Flash programmer dedicated to microcontrollers with on-chip flash memory
(type No. FL-PR2),	
Flashpro III	
(type No. FL-PR3, PG-FP3)	
FA-64CW,	Adapter for flash memory writing
FA-64GC,	
FA-64GK	

(3) Debugging Tools

When IE-78K0-NS in-circuit emulator is used

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA ^{Note}	Performance board that enhances and expands the IE-78K0-NS functions
IE-70000-98-IF-C	Interface adapter used when PD-9800 Series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable when PC-9800 Series notebook PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT TM or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF	Adapter necessary when using PCI-bus incorporated personal computer as host machine
IE-780034-NS-EM1	Emulation board to emulate the μ PD780034AY Subseries
NP-64CW	Emulation probe for 64-pin plastic shrink DIP (CW type)
NP-64GC	Emulation probe for 64-pin plastic QFP (CG-AB8 type)
NP-64GK	Emulation probe for 64-pin plastic LQFP (CG-8A8 type)
TGK-064SBW	Conversion adapter to connect the NP-64GK and a target system board on which the 64-pin plastic LQFP (GC-8A8 type) can be mounted
EV-9200GC-64	Socket mounted on target system board for the 64-pin plastic QFP (GC-AB8 type)
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file common to μ PD780034A Subseries

Note Under development

When using in-circuit emulator IE-78001-R-A

IE-78001-R-A	In-circuit emulator common to 78K/0 Series	
IE-70000-98-IF-C	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)	
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supported)	
IE-70000-PCI-IF	Adapter necessary when using PCI-bus incorporated personal computers as host machine.	
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine	
IE-780034-NS-EM1	Emulation board to emulate μ PD780034AY Subseries	
IE-78K0-R-EX1	Emulation probe conversion board to use IE-780034-NS-EM1 on IE-78001-R-A	
EP-78240CW-R	Emulation probe for 64-pin plastic shrink DIP (CW type)	
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)	
EP-78012GK-R	Emulation probe for 64-pin plastic LQFP (GK-8A8 type)	
TGK-064SBW	Conversion adapter for connecting target system board designed to allow mounting of 64-pin plastic LQFP (GK-8A8) and NP-64GK.	
EV-9200GC-64	Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)	
ID78K0	Integrated debugger for IE-78001-R-A	
SM78K0	System simulator common to 78K/0 Series	
DF780034	Device file common to μ PD780034A Subseries	

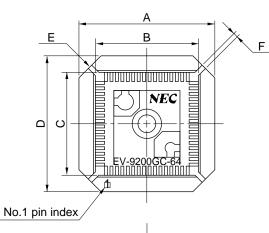
(4) Real-time OS

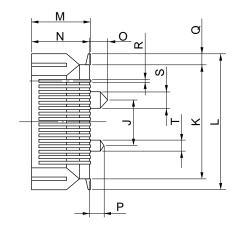
RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

(5) Cautions on using development tools

- The ID-78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780034.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 and the DF780034.
- The FL-PR2, FL-PR3, FA-64CW, FA-64GC, FA64GK, NP-64CW, NP64GC, and NP-64GK are products made by Naito Densei Machida Mfg. Co., Ltd. (+81-44-822-3813).
- Contact an NEC distributor regarding the purchase of these products.
- The TGK-064SBW is a product made by TOKYO ELETECH CORPORATION. For further information contact Daimaru Kogyo, Ltd.

Tokyo Electronic Division (+81-3-3820-7112)


Osaka Electronic Division (+81-6-6244-6672)


- For third party development tools, see the 78K/0 Series Selection Guide (U11126E).
- The host machines and OSs supporting each software are as follows.

Host Machine	PC	EWS	
[OS] Software	PC-9800 series [Windows TM] IBM PC/AT or compatibles [Japanese/English Windows]	HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™] , Solaris [™]] NEWS [™] (RISC) [NEWS-OS [™]]	
RA78K/0	\sqrt{Note}		
CC78K/0	\sqrt{Note}	\checkmark	
ID78K0-NS	\checkmark	-	
ID78K0	\checkmark	\checkmark	
SM78K0	\checkmark	_	
RX78K/0	√Note		
MX78K0	\sqrt{Note}	\checkmark	

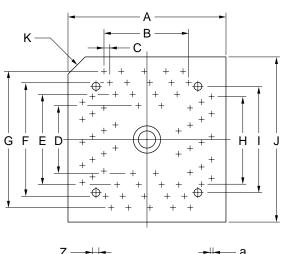
Note DOS-based software

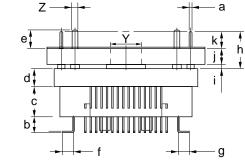
Conversion Socket Drawing (EV-9200GC-64) and Footprints

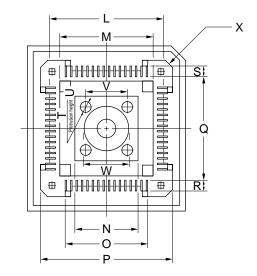
|--|

		EV-9200GC-64-G0	
ITEM	MILLIMETERS	INCHES	
Α	18.8	0.74	
В	14.1	0.555	
С	14.1	0.555	
D	18.8	0.74	
Е	4-C 3.0	4-C 0.118	
F	0.8	0.031	
G	6.0	0.236	
Н	15.8	0.622	
I	18.5	0.728	
J	6.0	0.236	
К	15.8	0.622	
L	18.5	0.728	
М	8.0	0.315	
N	7.8	0.307	
0	2.5	0.098	
Р	2.0	0.079	
Q	1.35	0.053	
R	0.35±0.1	$0.014^{+0.004}_{-0.005}$	
S	¢2.3	¢0.091	
Т	Ø1.5	Ø0.059	

Figure A-1. EV-9200GC-64 Drawing (For Reference Only)


Figure A-2. EV-9200GC-64 Footprints (For Reference Only)


EV-9200GC-64-P1E


ITEM	MILLIMETERS	INCHES
A	19.5	0.768
В	14.8	0.583
С	C 0.8±0.02 × 15=12.0±0.05 0.031 ^{+0.002} _{-0.001} × 0.591=	
D	$0.8\pm0.02 \times 15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 {=} 0.472^{+0.003}_{-0.002}$
E	14.8	0.583
F	19.5	0.768
G	6.00±0.08	0.236 ^{+0.004} -0.003
н	6.00±0.08	0.236 ^{+0.004} -0.003
I	0.5±0.02	$0.197^{+0.001}_{-0.002}$
J	¢2.36±0.03	Ø0.093 ^{+0.001} -0.002
К	¢2.2±0.1	$\phi_{0.087^{+0.004}_{-0.005}}$
L	¢1.57±0.03	Ø 0.062 ^{+0.001}

Caution DimensionsofmountpadforEV-9200andthatfortargetdevice (QFP) may be different in some parts. For the recommended mountpaddimensionsforQFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Conversion Adapter Drawing (TGK-064SBW)

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
А	18.4	0.724	а	<i>ф</i> 0.3	<i>ф</i> 0.012
В	0.65x15=9.75	0.026x0.591=0.384	b	1.85	0.073
С	0.65	0.026	с	3.5	0.138
D	7.75	0.305	d	2.0	0.079
E	10.15	0.400	е	3.9	0.154
F	12.55	0.494	f	1.325	0.052
G	14.95	0.589	g	1.325	0.052
Н	0.65x15=9.75	0.026x0.591=0.384	h	5.9	0.232
I	11.85	0.467	i	0.8	0.031
J	18.4	0.724	j	2.4	0.094
К	C 2.0	C 0.079	k	2.7	0.106
L	12.45	0.490			TGK-064SBW-G0E
М	10.25	0.404			
N	7.7	0.303			
0	10.02	0.394			
Р	14.92	0.587			
Q	11.1	0.437			
R	1.45	0.057			
S	1.45	0.057			
т	4- <i>¢</i> 1.3	4- <i>ф</i> 0.051			
U	1.8	0.071			

U	1.8	0.071
V	5.0	0.197
W	<i>\$</i> 5.3	<i>ф</i> 0.209
Х	4-C 1.0	4-C 0.039
Y	<i>\$</i> 3.55	<i>φ</i> 0.140
Z	<i>ф</i> 0.9	<i>φ</i> 0.035

Note: Product made by TOKYO ELETECH CORPORATION.

Figure A-3. TGK-064SBW Drawing (For Reference Only)

_

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Document No. (English)	Document No. (Japanese)
μPD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual	U14046E	U14046J
μPD780031AY, 780032AY, 780033AY, 780034AY Data Sheet	U14043E	U14043J
μPD78F0034AY Data Sheet	This manual	U14041J
78K/0 Series User's Manual Instruction	U12326E	U12326J
78K/0 Series Instruction Table		U10903J
78K/0 Series Instruction Set		U10904J

Development Tool Documents (User's Manuals)

Document Name		Document No. (English)	Document No. (Japanese)
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
CC78K/0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming Know-how	U13034E	U13034J
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-780034-NS-EM1		To be prepared	To be prepared
EP-78240		U10332E	EEU-986
EP-78012GK-R		EEU-1538	EEU-5012
SM78K0 System Simulator-Windows based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092E	U10092J
ID78K0-NS Integrated Debugger Windows based	Reference	U12900E	U12900J
ID78K0 Integrated Debugger EWS based	Reference	_	U11151J
ID78K0 Integrated Debugger PC based	Reference	U11539E	U11539J
ID78K0 Integrated Debugger Windows based	Guide	U11649E	U11649J

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.

Embedded Software Documents (User's Manuals)

Document Name		Document No. (English)	Document No. (Japanese)
78K/0 Series Real-time OS	Fundamental	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Fundamental	U12257E	U12257J

Other Documents

Document Name	Document No. (English)	Document No. (Japanese)
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Microcomputer - Related Products by Third Party		— U11416J

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I²C components conveys a license under the Philips I²C patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California

Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

FIP and IEBus are trademarks of NEC Corporation.

NEC

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.